You know what a Crime Scene Investigator looks like on television. Now, get to know the real career. Forensic Science plays a vital role in the criminal justice system – providing investigators with scientifically-based information through the analysis of physical evidence.

As a student in the Forensic Science/CSI pathway at the Public Service Leadership Academy at Fowler, you’ll be exposed to the real, everyday life of a crime scene investigator, gaining knowledge and hands-on experience in:

- Collecting and preserving material evidence found at crime scenes – including measuring, recording and analyzing chemical substances (such as tissue samples, physical materials and ballistics evidence)
- Communicating with experts in fingerprinting, ballistics, handwriting, electronics, documents, chemistry, medicine or metallurgy to interpret evidence
- Reconstructing crime scenes and testifying as a witness in trials or hearings

CAREER OPPORTUNITIES:
Crime Scene Investigator, Private Investigator, Law Enforcement
Course of Study Forensic Science/Crime Scene Investigation

<table>
<thead>
<tr>
<th>9th Grade</th>
<th>10th Grade</th>
<th>11th Grade</th>
<th>12th Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSLA Exploratory (1 Credit CTE)</td>
<td>CTE Forensic Science 100 (CSI100) (1 Credit CTE)</td>
<td>CTE Forensic Science 200 (CSI200) (2 Credits CTE)</td>
<td>CTE Forensic Science 300 (CSI300) (2 Credits CTE)</td>
</tr>
<tr>
<td>CTE Forensic Science 16-100</td>
<td>CTE Forensic Science 200 (CSI200) (2 Credits CTE)</td>
<td>CTE Forensic Science Integrated Science (CTE300) (1 Credit)</td>
<td>CTE Forensic Science Integrated ELA (CTE400) (1 Credit)</td>
</tr>
</tbody>
</table>

DISTRICT REQUIREMENTS

- Students must pass CTE CSI: Forensic Science 100, 200 and 300 to challenge the course approved technical assessment.
- All students in 9th grade will receive Career and Financial Management and CTE Exploratory classes.
- Student will have earned the 11th grade integrated science credit upon successful completion of the Forensic Science 100 and 200.
- Student will have earned the 12th grade integrated ELA credit upon successful completion of the Forensic Science 100, 200 and 300.
- Student will receive the CTE Endorsement upon successful completion of the Forensic Science Program and must pass the prescribed technical assessment and complete a commencement level project.
Course Syllabus

Forensic Science/Crime Scene Investigation

COURSE DESCRIPTION

Forensic Science is the scientific method of gathering and examining information which is then used in a court of law. This course is a lab-based, hands-on course that will explore the work of forensic scientists. Students will learn how forensic scientists collect and document physical evidence, conduct laboratory analysis and present results during testimony in a court of law. This course will examine actual case histories of crimes and require students to apply basic understandings of physics, chemistry, biology, psychiatry, math and more to reveal the whole story of a crime.

COURSE OBJECTIVES

Students will:
1. Explain the professional, legal and ethical responsibilities of Forensic Science professionals.
2. Document and process evidence from a crime scene.
3. Perform comparative analysis on forensic evidence (fingerprints, hair, ballistics, blood).
4. Plan and carry out investigations to address emerging research questions.
5. Engage in argument from evidence.
6. Research and address issues of crime in the community.

INTEGRATED ACADEMICS

N/A

EQUIPMENT AND SUPPLIES

- School will provide: Textbook and all lab materials
- Student will provide: 3-ring binder, composition lab book, notebook paper, pencil, pen, ear buds or headphones

TEXTBOOK

GRADING

- **20%** Tests: Tests include all summative assessments (written exams, projects, authentic products, presentations, etc.)
- **5%** Quizzes: Quizzes will cover the most recent material and review of important concepts.
- **25%** Labs: Labs are often performed in groups of 2-4 students. ALL lab work will be collected and curated in a composition notebook. Lab reports will require group collaboration and individual work and some formal lab reports will be typed.
- **50%** Class work: Most work will be completed in class.

ADDITIONAL COURSE POLICIES

The 3 R’s (Respect, Responsibility & Resilience) are the keys to success in this class!

- Respect everyone, including yourself, the class space and class materials.
- Act Responsibly. Arrive on time and prepared for class. Be in class before the bell rings. Remain seated until the teacher (not the bell) dismisses at the end of class. Turn in work on time.
- Practice Resiliency. Actively and positively participate in class.

Course Calendar

Forensic Science/Crime Scene Investigation

<table>
<thead>
<tr>
<th>QUARTER</th>
<th>UNITS OF STUDY</th>
</tr>
</thead>
</table>
| 1 | - Professionalism, Culture and Safety
 - Crime Scene Investigation
 - History, Legal System, and Role of Forensic Science
| 2 | - Forensic Hair and Fiber Analysis
 - Fingerprints |
| 3 | - Science Fair
 - Ballistics, Firearms and Tool Marks |
| 4 | - Blood Typing
 - Crime Scene Mapping and Criminal Justice Issues
 - Crime Scene Tech and Career Readiness |
Scope and Sequence

Forensic Science/Crime Scene Investigation

<table>
<thead>
<tr>
<th>Time Frame</th>
<th>Unit of Study</th>
<th>Key Questions</th>
<th>Key Learning Targets</th>
<th>Assessment Evidence of Learning</th>
<th>Related Standards</th>
<th>CCLS Literacy, Math, Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEEK 1-2</td>
<td>Professionalism, Culture and Safety</td>
<td>• What are the expectations of this class?</td>
<td>• Demonstrate safe practices in labs and field investigations</td>
<td>• Presentation: Lab Accreditation and Safety Poster Presentations (Google Presentation Slide)</td>
<td>Career Ready Practices</td>
<td>Literacy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Why is lab safety vital in science?</td>
<td>• Write a claim and support with evidence</td>
<td>• History of Forensic Science Prezi</td>
<td>CRP</td>
<td>RST.9-10.1,2,3,4,7 WHST.9-10.2,5,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Practice forensic science comparative analysis</td>
<td>• Ooblek: Claim-Evidence Reason Lab</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Explain the role of forensic science in emergency response</td>
<td>• Case Study: 9/11 Forensic Science Dentistry Identification</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Measureable You Inquiry Lab</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Lab: Odontology Identification Bite Mark Impression Lab</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Related Standards
- **HL 1,2,3**
- **LW 1,3,5,6**
- **ST 2,3,4,5,6**
- **HL-BRD 1,6**
- **LW-ENF 1,4,5,6,12**
- **ST-SM 3**

Industry Standards
- **Literacy**
 - RST.9-10.1,2,3,4,7
 - WHST.9-10.2,5,7

Pathway Standards
- **Math**
 - HL-BRD 1,6
 - LW-ENF 1,4,5,6,12
 - ST-SM 3
Scope and Sequence Forensic Science/Crime Scene Investigation

<table>
<thead>
<tr>
<th>Time Frame Unit of Study</th>
<th>Key Questions</th>
<th>Key Learning Targets (Students will know and be able to)</th>
<th>Assessment Evidence of Learning</th>
<th>Related Standards</th>
<th>CCLS Literacy, Math, Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEEKS 3-7 Crime Scene Investigation</td>
<td>• How can scientific methods help solve problems? • How is evidence collected and analyzed? • What is the value of evidence? • What procedures are implemented at a crime scene and why are they important?</td>
<td>• Work as a productive member of a team • Conduct a systematic search of a mock crime scene • Demonstrate crime scene sketching • Draw inferences and analyze crime scene evidence to develop a hypothesis • Reconstruct a crime scene from pieces of evidence • Demonstrate chain of custody and proper handling of evidence • State and describe the steps in processing a crime scene • Differentiate between testimonial and physical evidence • Correctly process trace evidence collected in a simulated crime scene</td>
<td>• Scenarios: Process Crime Scene Mistakes • Probative Value • Observation Experimental Design • Commercial Presentation • Lab: Trace Evidence • Blog Reflection: Eyewitness • Lab: Chain of Custody • Group Activity: Process Crime Scene • Triangulation of evidence • Lab: Crime Scene Sketch Reconstruction • Mock Crime Scene Investigation and Data Table • Analysis of forensic mistakes during O.J. Simpson trial • Admission into Evidence Court Cases Research • Silent Witness • Eyewitness: Frontline: What Jennifer Saw</td>
<td>Career Ready Practice CRP 1,2,4,7 Cluster Standards HL 1 LW 1,5 ST 4 Pathway Standards HL-BRD 1.6 LW-ENF 1.4,5,6 ST-SM 2,3 Industry Standards Science NGSSP 1,2,5,6,7,8</td>
<td>Literacy RST.9-10.1,2,3,4,7 WHST.9-10.2,4,5,7 Math MP 1,2,4,5,6 Science NGSSP 1,2,5,6,7,8</td>
</tr>
</tbody>
</table>
Scope and Sequence: Forensic Science/Crime Scene Investigation

<table>
<thead>
<tr>
<th>Time Frame</th>
<th>Unit of Study</th>
<th>Key Questions</th>
<th>Key Learning Targets</th>
<th>Assessment</th>
<th>Related Standards</th>
<th>CCLS Literacy, Math, Science</th>
</tr>
</thead>
</table>
| WEEKS 8-10 | History, Legal System, and Role of Forensic Science | • What is legally and ethically expected of forensic scientists and crime scene investigators?
• What is a crime lab and how does it work?
• What is the CSI effect?
• How has forensic science developed over time?
• What are the roles, functions and responsibilities of forensic science professionals?
• What are some examples of careers in forensic science?
• What are the distinguishing duties for various forensic specialists, and how does the legal system control these responsibilities? | • Describe the legal responsibilities of forensic science professionals within and outside of the courtroom
• Summarize what a crime lab is and how it works
• Recognize the major contributions to the development of forensic science
• Name and describe areas of specialization in forensic science
• Explore and identify various fields of expertise in forensic science
• Discuss the different education and training requirements for the various careers in forensic science
• Compare the Frye Standard and Daubert Ruling and discuss its impact on forensic evidence in court
• Discuss advantages and disadvantages of different evidence types
• Communicate and apply scientific information from current events as well as published articles
• Analyze, evaluate and critique scientific explanations by using data, logical reasoning and observations | • Case Study: Halloween History Horror
• Criminal Profile Wanted: Cereal Box Jack O Lantern face carving
• Close Reading: CSI Effect
• Summary: CSI Podcast Op-Ed
• Field Trip: Visit Court and Booking
• Blog Reflection: Court Case
• Admission into Evidence Court Cases Research
• Analysis of forensic mistakes during O.J. Simpson trial
• Interview of professional working in the field of forensic science | Career Ready Practice CRP
2,8,11,12 | Literacy
RST.9-10.1,2,3,4,7,9
WHST.9-10.1,2,4,6,7,8,9 | Cluster Standards
HL 1
LW 2
ST 1,2,6 | Pathway Standards
HL-BRD
2,4
LW-ENF
1,5
ST-SM
1,2,4 | Math
Industry Standards |
Scope and Sequence Forensic Science/Crime Scene Investigation

<table>
<thead>
<tr>
<th>Time Frame</th>
<th>Unit of Study</th>
<th>Key Questions</th>
<th>Key Learning Targets</th>
<th>Assessment</th>
<th>Related Standards</th>
<th>CCLS Literacy, Math, Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEEKS 11-14</td>
<td>Forensic Hair and Fiber Analysis</td>
<td>What are the differences between class characteristics and individual characteristics?</td>
<td>Use a microscope effectively in the lab setting</td>
<td>Paper Bindle: Collect Trace Evidence in the Field</td>
<td>Career Ready Practice</td>
<td>Science Literacy RST.9-10.3,4,7,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>How are the properties of light used in the collection and analysis of trace evidence?</td>
<td>Sketch detailed views of objects as seen through a microscope</td>
<td>Hair Impression Slides</td>
<td>CRP 2,8,11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prepare slides of hair evidence including hair impression slides</td>
<td>Identify Hair Structures</td>
<td>Cluster Standards HL 1 LW 2 ST 2,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Identify and describe the function of hair structures including medulla, cortex, cuticle, corticle fuci, pigment granules and ovoid bodies</td>
<td>Difference Between Animal and Human Hair Lab</td>
<td>Pathway Standards HL-BRD 6 LW-ENF 1,6,12 ST-SM 2,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Identify the different medulla and cuticle patterns using a microscope</td>
<td>Identification of Unknown Hair</td>
<td>Industry Standards Science NGSSP 1,2,3,7,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Identify species of origin of a hair sample</td>
<td>Categorizing somatic and racial differences</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Summarize the importance of the presence of DNA in analyzing hair evidence</td>
<td>Characteristics of Hair Scales Lab</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interpret the tips of hair for species identification</td>
<td>Trace Evidence Quiz and Exam</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Give examples of how chemical analysis of hair can provide clues in a crime</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Use technical vocabulary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Identify the racial and somatic origin of unknown hairs based on their characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Forensic Hair and Fiber Analysis

- **WEEKS 11-14**
- **Forensic Hair and Fiber Analysis**
- **Key Questions**
 - What are the differences between class characteristics and individual characteristics?
 - How are the properties of light used in the collection and analysis of trace evidence?
- **Key Learning Targets**
 - Use a microscope effectively in the lab setting
 - Sketch detailed views of objects as seen through a microscope
 - Prepare slides of hair evidence including hair impression slides
 - Identify and describe the function of hair structures including medulla, cortex, cuticle, corticle fuci, pigment granules and ovoid bodies
 - Identify the different medulla and cuticle patterns using a microscope
 - Identify species of origin of a hair sample
 - Summarize the importance of the presence of DNA in analyzing hair evidence
 - Interpret the tips of hair for species identification
 - Give examples of how chemical analysis of hair can provide clues in a crime
 - Use technical vocabulary
 - Identify the racial and somatic origin of unknown hairs based on their characteristics
- **Assessment**
 - Paper Bindle: Collect Trace Evidence in the Field
 - Hair Impression Slides
 - Identify Hair Structures
 - Difference Between Animal and Human Hair Lab
 - Identification of Unknown Hair
 - Categorizing somatic and racial differences
 - Characteristics of Hair Scales Lab
 - Trace Evidence Quiz and Exam
- **Related Standards**
 - Career Ready Practice CRP 2,8,11
 - Cluster Standards HL 1 LW 2 ST 2,6
 - Pathway Standards HL-BRD 6 LW-ENF 1,6,12 ST-SM 2,4
 - Industry Standards Science NGSSP 1,2,3,7,8
- **CCLS Literacy, Math, Science**
 - Science Literacy RST.9-10.3,4,7,9 WHST.9-10.2,5,7
Scope and Sequence: Forensic Science/Crime Scene Investigation

<table>
<thead>
<tr>
<th>Time Frame</th>
<th>Unit of Study</th>
<th>Key Questions</th>
<th>Key Learning Targets (Students will know and be able to)</th>
<th>Assessment Evidence of Learning</th>
<th>Related Standards</th>
<th>CCLS Literacy, Math, Science</th>
</tr>
</thead>
</table>
| WEEKS 15-20| Fingerprints | - How and when was the science of fingerprints discovered?
- What are the requirements for a quality set of fingerprints?
- What are different methods of developing fingerprints?
- How can fingerprints that may not be visible be developed? | - Describe the history of fingerprinting
- Depict the structure of human skin that cause fingerprints
- Compare the three major fingerprint patterns of arches, loops, and whorls, and their respective subclasses
- Describe the fingerprint minutiae
- Determine the reliability of fingerprints as a means of identification
- Demonstrate how fingerprint evidence is collected
- Determine if a fingerprint matches a fingerprint on record | - Activity: History of Fingerprinting Timeline
- Project: Human Skin Model
- Project: Fingerprint Minutiae Model
- Activity: Fingerprint Lifting Digital SKILLS USA Lesson (blog, podcast, video)
- Lab: Fingerprint Comparison Analysis
- Discussion: Fingerprinting, Identification and Privacy in Society
- Privacy and Identification Op-Ed (IAFIS)
- Demonstration: Latent Fingerprint Visualization Methods | CRP 2,4,6,7,8,1
1,12
Cluster Standards
HL 1,2,3
LW 1,3,5,6
ST 2,3,4,5,6
Pathway Standards
HL-BRD 1,6
LW-ENF 1,4,5,6,12
ST-SM 3
Industry Standards
SCIENCE 1,2,3,6,7,8 | Career Ready Practice
1,12
Cluster Standards
HL 1,2,3
LW 1,3,5,6
ST 2,3,4,5,6
Pathway Standards
HL-BRD 1,6
LW-ENF 1,4,5,6,12
ST-SM 3
Industry Standards | Literacy RST.9-10.1,2,3
WHST.9-10.2,5,7
Math MP 1,3,5
Science NGSSP 1,2,3,6,7,8 |
Scope and Sequence: Forensic Science/Crime Scene Investigation

Time Frame

| WEEKS 21-26 | Science Fair |

<table>
<thead>
<tr>
<th>Key Questions</th>
<th>Key Learning Targets</th>
<th>Assessment Evidence of Learning</th>
<th>Related Standards</th>
<th>CCLS Literacy, Math, Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>How do forensic scientists test and design experiments to answer a research question?</td>
<td>Create an experimental research question</td>
<td>Activity: How to brainstorm</td>
<td>Career Ready Practice</td>
<td>RST.9-10.1,2,4,7,9</td>
</tr>
<tr>
<td></td>
<td>Write a hypothesis to test a research question</td>
<td>Conference: Research Plan and Project Proposal</td>
<td>CRP 2,4,6,8,11,12</td>
<td>WHST.9-10.1,2,4,5,6,7,8,9</td>
</tr>
<tr>
<td></td>
<td>Use credible sources to compile research on a topic</td>
<td>Presentation: Credible Source Pyramid and Analysis</td>
<td>Cluster Standards HL 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outline and draft a background research paper</td>
<td>Writing Outline: Research Background</td>
<td>LW 2,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Create a paper and digital data table to collect quantitative and qualitative data</td>
<td>Reflection: Science Fair Journal</td>
<td>ST 1,2,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analyze data for patterns and trends</td>
<td>Conference: Experimental Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Draft conclusions from data to support or abandon hypothesis and explain results</td>
<td>Lab: Conduct Research Experiment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Present research conclusions to a public audience</td>
<td>Activity: Gather and Display Data and Graph</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Writing: Analyze data and summarize conclusions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project: Science Fair Display Board</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Presentation: Science Fair Poster Presentation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Career Ready Practice

| CRP 2,4,6,8,11,12 | Cluster Standards HL 1 | Pathway Standards HL-BRD 2,4 | Industry Standards NGSSP 1,3,4,5,6,7,8 |

Pathway Standards

| HL-BRD 2,4 | LW-ENF 1,5 | ST-SM 1,2,4 |

Industry Standards

| Science NGSSP 1,3,4,5,6,7,8 | Career | |

CCLS Literacy, Math, Science

| RST.9-10.1,2,4,7,9 | WHST.9-10.1,2,4,5,6,7,8,9 | |

Career Literacy

| RST.9-10.1,2,4,7,9 | WHST.9-10.1,2,4,5,6,7,8,9 | |

Math

| MP 1,2,3,4,5,6,7,8 | |

Science

| NGSSP 1,3,4,5,6,7,8 | |

SYRACUSE CITY SCHOOL DISTRICT

CAREER AND TECHNICAL EDUCATION PROGRAM
Scope and Sequence: Forensic Science/Crime Scene Investigation

<table>
<thead>
<tr>
<th>Time Frame</th>
<th>Unit of Study</th>
<th>Key Questions</th>
<th>Key Learning Targets (Students will know and be able to)</th>
<th>Assessment Evidence of Learning</th>
<th>Related Standards</th>
<th>CCLS Literacy, Math, Science</th>
</tr>
</thead>
</table>
| WEEKS 27-30 | Ballistics, Firearms and Tool Marks | • How do crime scene investigators examine tool mark impressions, bullet fragments and bullet holes? | • Explain the individual characteristics of tool marks
• Recognize characteristics of bullet and cartridge cases
• Explain laboratory methodologies used to determine whether an individual has fired a weapon, such as identifying gunshot residue
• Recognize the type of information available through the National Integrated Ballistics Information Network | • Tool Mark Analysis Experiment
• Firearms and Trajectory Activity
• Firearms and Tool Marks Examination
• Firearms and Tool Marks Crossword Puzzle
• Marshmallow Shooters
• JFK
• Oscar Pistorius
• Frontline: Ring of Fire-The Crisis of American Made Handguns
• Ballistics NOVA: Who Shot JFK? | Ready Practice
CRP
2,4,8,11,1
2 | Literacy
RST.9-10.1,2,3
WHST.9-10.2,5,7 |

| WEEKS 31-33 | Blood Typing | • What is serology and how is it used to solve crimes? | • Identify characteristics of human blood
• Determine genetics of the human red blood system
• Identify and explore toxicology lab procedures, such as blood alcohol concentrations | • Blood Basics Notes
• Lab: Who's the Daddy? Blood Type Laboratory
• Punnett Square Blood Type Activity
• Blood Basics Online (Computer Lab)
• Forensic Serology Exam
• Blood Quiz | Career Ready Practice
CRP
2,4,5,6,7,8
.11,12
Cluster Standards
HL 1,2,3
LW 1,3,5,6
ST 2,3,4,5,6
Industry Standards
HL-BRD 1,6
LW-ENF 1,4,5,6,12
ST-SM 3 | Literacy
RST.9-10.1,2,4,7
WHST.9-10.1,2,4,5,6 |

Industry Standards
Science
NGSSP 1,2,3,4,6,7,8
Scope and Sequence: Forensic Science/Crime Scene Investigation

<table>
<thead>
<tr>
<th>Time Frame</th>
<th>Unit of Study</th>
<th>Key Questions</th>
<th>Key Learning Targets</th>
<th>Assessment Evidence of Learning</th>
<th>Related Standards</th>
<th>CCLS Literacy, Math, Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEEKS 34-37</td>
<td>Crime Scene Mapping and Criminal Justice Issues</td>
<td>• What is crime mapping? • What is GIS? • What crimes occur in our community?</td>
<td>• Identify methods for measuring crime • Interpret a topographical map • Read a compass • Identify relevant issues in the community • Design and carry out a service project to address a community need</td>
<td>• Current Events Summary Blog/Newspaper Article • Twitter Map • Co-Curricular GIS Map creation • Service Project</td>
<td>Career Ready Practice CRP 1,2,3,4,5,9,10,11,12 Cluster Standards HL 3 LW 3 ST 1,2 Pathway Standards HL-BRD 1 LW-ENF 1,4,12 ST-SM 2,3,4</td>
<td>Literacy RST.9-10.1,2,4,7 WHST.9-10.1,2,4,7,8,9</td>
</tr>
<tr>
<td>WEEKS 38-40</td>
<td>Crime Scene Tech and Career Readiness</td>
<td>• What have you learned this year? • What is the role of a Crime Scene Investigator?</td>
<td>• Work as a member of team • Work in cross-curricular groups • Compile accomplishments in a resume • Write a cover letter • Practical Exam • Crime Scene Scenario Run Through • Sketch UP • Resume • Cover Letter • Portfolio • Presentation</td>
<td></td>
<td>Math MP 1,2,3,4,5,6,7,8</td>
<td>Science NGSSP 1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>